Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plants (Basel) ; 12(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836173

RESUMO

Sugar Efflux transporters (SWEET) are involved in diverse biological processes of plants. Pathogens have exploited them for nutritional gain and subsequently promote disease progression. Recent studies have implied the involvement of potato SWEET genes in the most devastating late blight disease caused by Phytophthora infestans. Here, we identified and designated 37 putative SWEET genes as StSWEET in potato. We performed detailed in silico analysis, including gene structure, conserved domains, and phylogenetic relationship. Publicly available RNA-seq data was harnessed to retrieve the expression profiles of SWEET genes. The late blight-responsive SWEET genes were identified from the RNA-seq data and then validated using quantitative real-time PCR. The SWEET gene expression was studied along with the biotrophic (SNE1) and necrotrophic (PiNPP1) marker genes of P. infestans. Furthermore, we explored the co-localization of P. infestans resistance loci and SWEET genes. The results indicated that nine transporter genes were responsive to the P. infestans in potato. Among these, six transporters, namely StSWEET10, 12, 18, 27, 29, and 31, showed increased expression after P. infestans inoculation. Interestingly, the observed expression levels aligned with the life cycle of P. infestans, wherein expression of these genes remained upregulated during the biotrophic phase and decreased later on. In contrast, StSWEET13, 14, and 32 didn't show upregulation in inoculated samples suggesting non-targeting by pathogens. This study underscores these transporters as prime P. infestans targets in potato late blight, pivotal in disease progression, and potential candidates for engineering blight-resistant potato genotypes.

2.
Life (Basel) ; 11(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200706

RESUMO

Among abiotic stresses, salinity is a major global threat to agriculture, causing severe damage to crop production and productivity. Potato (Solanum tuberosum) is regarded as a future food crop by FAO to ensure food security, which is severely affected by salinity. The growth of the potato plant is inhibited under salt stress due to osmotic stress-induced ion toxicity. Salinity-mediated osmotic stress leads to physiological changes in the plant, including nutrient imbalance, impairment in detoxifying reactive oxygen species (ROS), membrane damage, and reduced photosynthetic activities. Several physiological and biochemical phenomena, such as the maintenance of plant water status, transpiration, respiration, water use efficiency, hormonal balance, leaf area, germination, and antioxidants production are adversely affected. The ROS under salinity stress leads to the increased plasma membrane permeability and extravasations of substances, which causes water imbalance and plasmolysis. However, potato plants cope with salinity mediated oxidative stress conditions by enhancing both enzymatic and non-enzymatic antioxidant activities. The osmoprotectants, such as proline, polyols (sorbitol, mannitol, xylitol, lactitol, and maltitol), and quaternary ammonium compound (glycine betaine) are synthesized to overcome the adverse effect of salinity. The salinity response and tolerance include complex and multifaceted mechanisms that are controlled by multiple proteins and their interactions. This review aims to redraw the attention of researchers to explore the current physiological, biochemical and molecular responses and subsequently develop potential mitigation strategies against salt stress in potatoes.

3.
Plant Physiol Biochem ; 154: 171-183, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32563041

RESUMO

Nitrogen (N) is an important nutrient for plant growth. However, its excess application leads to environmental damage. Hence, improving nitrogen use efficiency (NUE) of plant is one of the plausible options to solve the problems. Aim of this study was to identify candidate genes involved in enhancing NUE in potato cv. Kufri Gaurav (N efficient). Plants were grown in aeroponic with two contrasting N regimes (low N: 0.75 mM, and high N: 7.5 mM). Higher NUE in Kufri Gaurav was observed in low N based on the parameters like NUE, NUpE (N uptake efficiency), NUtE (N utilization efficiency) and AgNUE (agronomic NUE). Further, global gene expression profiles in root, leaf and stolon tissues were analyzed by RNA-sequencing using Ion Proton™ System. Quality data (≥Q20) of 2.04-2.73 Gb per sample were mapped with the potato genome. Statistically significant (P ≤ 0.05) differentially expressed genes (DEGs) were identified such as 176 (up-regulated) and 30 (down-regulated) in leaves, 39 (up-regulated) and 105 (down-regulated) in roots, and 81 (up-regulated) and 694 (down-regulated) in stolons. The gene ontology (GO) terms like metabolic process, cellular process and catalytic activity were predominant. Our RT-qPCR analysis confirmed the gene expression profiles of RNA-seq. Overall, we identified candidate genes associated with improving NUE such as superoxide dismutase, GDSL esterase lipase, probable phosphatase 2C, high affinity nitrate transporters, sugar transporter, proline rich proteins, transcription factors (VQ motif, SPX domain, bHLH) etc. Our findings suggest that these candidate genes probably play crucial roles in enhancing NUE in potato.


Assuntos
Genoma de Planta , Nitrogênio/metabolismo , Solanum tuberosum , RNA de Plantas , Análise de Sequência de RNA , Solanum tuberosum/genética , Transcriptoma
4.
Braz. j. microbiol ; 48(2): 193-195, April.-June 2017. tab
Artigo em Inglês | LILACS | ID: biblio-839391

RESUMO

Abstract Ralstonia solanacearum is a heterogeneous species complex causing bacterial wilts in more than 450 plant species distributed in 54 families. The complexity of the genome and the wide diversity existing within the species has led to the concept of R. solanacearum species complex (RsSC). Here we report the genome sequence of the four strains (RS2, RS25, RS48 and RS75) belonging to three of the four phylotypes of R. solanacearum that cause potato bacterial wilt in India. The genome sequence data would be a valuable resource for the evolutionary, epidemiological studies and quarantine of this phytopathogen.


Assuntos
Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , DNA Bacteriano/química , Genoma Bacteriano , Análise de Sequência de DNA , Ralstonia solanacearum/genética , Genótipo , DNA Bacteriano/genética , Ralstonia solanacearum/isolamento & purificação , Ralstonia solanacearum/classificação , Índia
5.
Braz J Microbiol ; 48(2): 193-195, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28041840

RESUMO

Ralstonia solanacearum is a heterogeneous species complex causing bacterial wilts in more than 450 plant species distributed in 54 families. The complexity of the genome and the wide diversity existing within the species has led to the concept of R. solanacearum species complex (RsSC). Here we report the genome sequence of the four strains (RS2, RS25, RS48 and RS75) belonging to three of the four phylotypes of R. solanacearum that cause potato bacterial wilt in India. The genome sequence data would be a valuable resource for the evolutionary, epidemiological studies and quarantine of this phytopathogen.


Assuntos
DNA Bacteriano/química , Genoma Bacteriano , Genótipo , Doenças das Plantas/microbiologia , Ralstonia solanacearum/genética , Análise de Sequência de DNA , Solanum tuberosum/microbiologia , DNA Bacteriano/genética , Índia , Ralstonia solanacearum/classificação , Ralstonia solanacearum/isolamento & purificação
6.
Mitochondrial DNA B Resour ; 2(1): 90-91, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33473726

RESUMO

Complete mitochondrial genome of Phytophthora infestans, A2 mating type (MT) with a size of ≅37,767 bp was sequenced. A total of 53 protein-coding genes are predicted on both strands, including 25 tRNA, 2 rRNA, and 18 respiratory proteins. Gene order of A2MT was consistent with that established in A1, despite high level of polymorphism in both coding and non-coding regions. The mtDNA of A2MT was found to have 99.5% and 99.4% homology with Ia and Ib, whereas 94.7% and 94.3% with IIa and IIb, respectively. Study of repeats revealed a dinucleotide (AT)9 specific to A1 and homology of cox1 gene sequence revealed the relationship among 50 Phytophthora species.

7.
Nature ; 475(7355): 189-95, 2011 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-21743474

RESUMO

Potato (Solanum tuberosum L.) is the world's most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade. We also sequenced a heterozygous diploid clone and show that gene presence/absence variants and other potentially deleterious mutations occur frequently and are a likely cause of inbreeding depression. Gene family expansion, tissue-specific expression and recruitment of genes to new pathways contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop.


Assuntos
Genoma de Planta/genética , Genômica , Solanum tuberosum/genética , Evolução Molecular , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Variação Genética , Haplótipos/genética , Heterozigoto , Homozigoto , Imunidade Inata , Endogamia , Anotação de Sequência Molecular , Dados de Sequência Molecular , Doenças das Plantas/genética , Ploidias , Solanum tuberosum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...